Side lengths and angle measures in similar figures

Two polygons are similar if and only if their corresponding angles are congruent and their corresponding sides are proportional.

Learn with an example

RT = _________

Use the fact that VWX is similar to STR to write proportions and solve for RT.

△VWX ~ △STR

To start, find two corresponding sides whose lengths are given: VW=14 and ST=2. Now write the proportions

Write a proportion to solve for RT . Use VW , ST , RT , and its corresponding side WX.

VW / ST = WX / RT Definition of similarity

14 / 2 = 21 / RT Plug in VW=14, ST=2 and WX=21

7 = 21 / RT Simplify

7 . RT = 21 Multiply both sides by RT

RT = 3 Divide both sides by 7

So, RT=3.

BC = ______

Use the fact that BCD is similar to JHI to write proportions and solve for BC.

△BCD~△JHI

To start, find two corresponding sides whose lengths are given: BD=4 and IJ=1. Now write the proportions.

Write a proportion to solve for BC . Use BD , IJ , BC , and its corresponding side HJ.

BD / IJ = BC / HJ Definition of similarity

4 / 1 = BC / 1 Plug in BD=4, IJ=1 and HJ=1

4 = BC Simplify

So , BC = 4.

∠W = ______ °

∠W is not given, but the measure of its corresponding angle—∠E—is.

△WXY ~ △EFD

So, ∠W=∠E=56°.

Let’s practice!