Midsegments of triangles

1. Definition of a Midsegment:

  • A midsegment of a triangle is a line segment that connects the midpoints of two sides of the triangle.
  • Each triangle has three midsegments, one for each pair of sides.

2. Properties of the Midsegment:

  • Parallelism: The midsegment is parallel to the third side of the triangle (the side not connected by the midsegment).
  • Length: The length of the midsegment is half the length of the third side.
    • If the third side is denoted as ( AB ) and the midsegment connects the midpoints of ( AC ) and ( BC ), then ( \text{Midsegment} = \frac{1}{2} \times AB ).
  • Divides the Triangle: The midsegment divides the triangle into two smaller triangles, each of which is similar to the original triangle by the Side-Angle-Side (SAS) Similarity Theorem.

3. Triangle Midsegment Theorem:

  • This theorem states:
    • A midsegment of a triangle is parallel to one side of the triangle and its length is half the length of that side.
  • The theorem can be used to solve problems involving triangle side lengths and parallel lines.

Learn with an example

If TV=48, what is  SW?

SW = ______

Since VW≅UV and ST≅TU,TV is a midsegment of △SUW.

So, TV is half of SW. In other words, SW is twice TV. Set SW equal to twice TV and solve for SW.

SW = 2 . TV

= 2(48) Plug in TV=48

= 96 Multiply

So, SW=96.

📚 If WX=66, what is VY?

VY = ______

Since XY≅YZ and VW≅VZ, VY is a midsegment of △WXZ.

So, VY is half of WX. Set VY equal to half of  WX and solve for VY.

VY = WX / 2

= 66/2 Plug in WX=66

= 33 Divide

So, VY=33.

📚 If UV=22, what is WY?

WY =_________

Since VW ≅ WX and UY ≅ XY, WY is a midsegment of △UVX.

So, WY is half of UY. Set WY equal to half of  UY and solve for WY.

WY = UY / 2

= 22/2 Plug in UV=22

= 11 Divide

So, WY=11.

Let’s practice!