Compositions of congruence transformations: graph the image

glide reflection is the composition of a translation followed by a reflection across a line parallel to the direction of the translation.

The image of a point (x,y) translated h units horizontally and k units vertically is (x+h,y+k).

The image of a point (x,y) reflected across the x-axis is (x,–y).

Learn with an example

Graph the image of △UVW after the following sequence of transformations:

  • Rotation 270° anticlockwise around the origin
  • Reflection across the y-axis

First, rotate △UVW 270° anticlockwise about the origin. Use the transformation rule (x,y)↦(y,–x)to find the image of each of its three vertices.

  • U(–3, –12)↦U(–12, 3)
  • V(–11, –8)↦V(–8, 11)
  • W(–3, –4)↦W(–4, 3)

Second, reflect △UVWacross the y-axis.Use the transformation rule (x,y)↦(–x,y)to find the image of each of its three vertices.

  • U(–12, 3)↦U(12, 3)
  • V(–8, 11)↦V(8, 11)
  • W(–4, 3)↦W(4, 3)

So, the image of △UVW after rotating 270° anticlockwise around the origin and reflecting across the y-axis is △UVW.

Graph the image of square FGHI after the following sequence of transformations:

  • Translation (x, y) ↦ (x–17, y+20)
  • Reflection across the y-axis

First, translate FGHI. Use the transformation rule (x,y)↦(x–17,y+20)to find the image of each of its four vertices.

  • F(7, –14)↦F(–10, 6)
  • G(13, –12)↦G(–4, 8)
  • H(11, –6)↦H(–6, 14)
  • I(5, –8)↦I(–12, 12)

Second, reflect FGHI across the y-axis.Use the transformation rule (x,y)↦(–x,y) to find the image of each of its four vertices.

  • F(–10, 6)↦F(10, 6)
  • G(–4, 8)↦G(4, 8)
  • H(–6, 14)↦H(6, 14)
  • I(–12, 12)↦I(12, 12)

So, the image of FGHI after translating –17 units horizontally and 20 units vertically and reflecting across the y-axis is FGHI.

let’s practice!