Distance formula

The distance d between the points (x1 , y1 ) and (x2 , y2 ) can be found using the distance formula:

d = √(x2-x1)2 +(y2-y1)2

Learn with an example

Write your answer as a whole number or a fully simplified radical expression. Do not round. ________ Units

To find the distance between the points (10 , 8) and (2 ,2) ,  use the distance formula.

The first point is (10 , 8) . So, x1 = 10 and y1=8 .

The second point is (2 ,2) . So , x2 = 2 and y2=2.

Substitute these values into the distance formula.

d = √(x2-x1)2 +(y2-y1)2

d = √(2 – 10)2 + (2 – 8)2

d = √(-8)2 + (-6)2

d = √64 + 36

d = √100

d = 10

The distance between (10 , 8) and (2 ,2) is 10 units.

Write your answer as a whole number or a fully simplified radical expression. Do not round. ________ Units

To find the distance between the points (6 , 7) and (10 ,4) ,  use the distance formula.

The first point is (10 , 8) . So, x1 = 6 and y1=7 .

The second point is (2 ,2) . So , x2 = 10 and y2=4.

Substitute these values into the distance formula.

d = √(x2-x1)2 +(y2-y1)2

d = √(10 – 6)2 + (4 – 7)2

d = √(4)2 + (-3)2

d = √16 + 9

d = √25

d = 5

The distance between (6 , 7) and (10 ,4) is 5 units.

Write your answer as a whole number or a fully simplified radical expression. Do not round. ________ Units

To find the distance between the points (5 , 0) and (8 ,4) ,  use the distance formula.

The first point is (5 , 0) . So, x1 = 5 and y1=0 .

The second point is (8 ,4) . So , x2 = 8 and y2=4.

Substitute these values into the distance formula.

d = √(x2-x1)2 +(y2-y1)2

d = √(8 – 5)2 + (4 – 0)2

d = √(3)2 + (4)2

d = √9 + 16

d = √25

d = 5

The distance between (5 , 0) and (8 ,4) is 5 units.

let’s practice!