Factorize by grouping

If a polynomial has four terms, you may be able to factor by grouping. Once the terms are in standard order, factor out the highest common factor (HCF) of the first two terms and the HCF of the second two terms. If the expressions in brackets match, you can factor by grouping:

ac+ad+bc+bd

a(c+d)+b(c+d)

(a+b)(c+d)

Learn with an example

m3–m2+10m–10=—————-

Factor by grouping.

m3–m2+10m–10

m2(m–1)+10(m–1) Factor by grouping; the expressions in brackets should match

(m2+10)(m–1) Apply the distributive property

2q3+3q2+12q+18=——————

Factor by grouping.

2q3+3q2+12q+18

q2(2q+3)+6(2q+3)Factor by grouping; the expressions in brackets should match

(q2+6)(2q+3)Apply the distributive property

14v3+7v2+20v+10=———–

Factor by grouping.

14v3+7v2+20v+10

7v2(2v+1)+10(2v+1)Factor by grouping; the expressions in brackets should match

(7v2+10)(2v+1)Apply the distributive property