Factorise quadratics: special cases

Factorizing a difference of squares:

a2–b2=(a+b)(a–b)

a2+2ab+b2=(a+b)2

a2–2ab+b2=(a–b)2

Learn with an example

25z2–16=___________

Notice that 25z2–16 is a difference of squares, because it can be written in the form a2–b2, where a is 5z and b is 4.

a2–b2

(5z)242

25z2–16

Now use the formula for factorising a difference of squares.

a2–b2=(a+b)(a–b)

(5z)242=(5z+4)(5z–4)

25z2–16=(5z+4)(5z–4)

The factorised form of 25z2–16 is (5z+4)(5z–4).

Finally, check your work.

(5z+4)(5z–4)

25z2+20z–20z–16Apply the distributive property (FOIL)

25z2–16

Yes, 25z2–16=(5z+4)(5z–4).

f2–8f+16=_________________

Notice that f2–8f+16 is a perfect square trinomial because it can be written in the form a2–2ab+b2, where a is f and b is 4.

a2–2ab+b2

f2–2f . 4+42

f2–8f+16

Now use the formula for factorising perfect square trinomials.

a2–2ab+b2=(a–b)2

f2–2f . 4+42=(f–4)2

f2–8f+16=(f–4)2

The factorised form of f2–8f+16 is (f–4)2.

Finally, check your work.

(f–4)2

(f–4)(f–4)Expand

f2–4f–4f+16 Apply the distributive property (FOIL)

f2–8f+16

Yes, f2–8f+16=(f–4)2.

q2–4q+4=____________________

Notice that q2–4q+4 is a perfect square trinomial because it can be written in the form a2–2ab+b2, where a is q and b is 2.

a2–2ab+b2

q2–2q . 2+22

q2–4q+4

Now use the formula for factorising perfect square trinomials.

a2–2ab+b2=(a–b)2

q2–2q . 2+22=(q–2)2

q2–4q+4=(q–2)2

The factorised form of q2–4q+4 is (q–2)2.

Finally, check your work.

(q–2)2

(q–2)(q–2)Expand

q2–2q–2q+4Apply the distributive property (FOIL)

q2–4q+4

Yes, q2–4q+4=(q–2)2.

let’s practice!