Factorise quadratics with other leading coefficients

To factorize a quadratic of the form ax2+bx+c, write it as

ax2+r1x+r2x+c

where a . c=r1. r2 and b=r1+r2. Then factor by grouping.

Learn with an example

3m2+5m+2=———-

Look at the given quadratic:

3m2+5m+2

The product ac is 6, so you need to find a pair of factors with a product of 6. The b term is 5, so you need to find a pair of factors with a sum of 5. Since the product is positive (6) and the sum is positive (5), you need both factors to be positive.

Make a list of the possible factor pairs with a product of 6, and then find the one with a sum of 5.

The factors 2 and 3 have a sum of 5. So, replace the quadratic’s 5m term with 2m and 3m, and then factor by grouping.

3m2+5m+2

3m2+2m+3m+2

m(3m+2)+1(3m+2)Factor by grouping; the expressions in brackets should match

(m+1)(3m+2)

Finally, check your work.

(m+1)(3m+2)

3m2+3m+2m+2Apply the distributive property (FOIL)

3m2+5m+2

Yes, 3m2+5m+2=(m+1)(3m+2).

2t2+13t+11=———

Look at the given quadratic:

2t2+13t+11

The product ac is 22, so you need to find a pair of factors with a product of 22. The b term is 13, so you need to find a pair of factors with a sum of 13. Since the product is positive (22) and the sum is positive (13), you need both factors to be positive.

Make a list of the possible factor pairs with a product of 22, and then find the one with a sum of 13.

The factors 2 and 11 have a sum of 13. So, replace the quadratic’s 13t term with 2t and 11t, and then factor by grouping.

2t2+13t+11

2t2+2t+11t+11

2t(t+1)+11(t+1)Factor by grouping; the expressions in brackets should match

(2t+11)(t+1)

Finally, check your work.

(2t+11)(t+1)

2t2+11t+2t+11 Apply the distributive property (FOIL)

2t2+13t+11

Yes, 2t2+13t+11=(2t+11)(t+1).

2t2+9t+9=———

Look at the given quadratic:

2t2+9t+9

The product ac is 18, so you need to find a pair of factors with a product of 18. The b term is 9, so you need to find a pair of factors with a sum of 9. Since the product is positive (18) and the sum is positive (9), you need both factors to be positive.

Make a list of the possible factor pairs with a product of 18, and then find the one with a sum of 9.

The factors 3 and 6 have a sum of 9. So, replace the quadratic’s 9t term with 3t and 6t, and then factor by grouping.

2t2+9t+9

2t2+3t+6t+9

t(2t+3)+3(2t+3)Factor by grouping; the expressions in brackets should match

(t+3)(2t+3)

Finally, check your work.

(t+3)(2t+3)

2t2+6t+3t+9 Apply the distributive property (FOIL)

2t2+9t+9

Yes, 2t2+9t+9=(t+3)(2t+3).

let’s practice!