Multiply two binomials

To simplify the product of two binomials, use the distributive property.

As a shortcut, you can use the FOIL method. Find the products of the First, Outside, Inside, and Last terms, and then add them.

Learn with an example

Simplify your answer.

(2k + 4) (k + 2)

Use the distributive property to simplify (2k+4)(k+2). You can use the FOIL method:

Multiply the first terms of (2k+4)(k+2):

(2k)(k)=2k2

Multiply the outside terms of (2k+4)(k+2):

(2k)(2)=4k

Multiply the inside terms of (2k+4)(k+2):

(4)(k)=4k

Multiply the last terms of (2k+4)(k+2):

(4)(2)=8

Finally, add these results and simplify.

2k2+4k+4k+8

2k2+8k+8

Simplify your answer.

(2b+4)(2b–3)

Use the distributive property to simplify (2b+4)(2b–3). You can use the FOIL method:

Multiply the first terms of (2b+4)(2b–3):

(2b)(2b)=4b2

Multiply the outside terms of (2b+4)(2b–3):

(2b)(–3)=–6b

Multiply the inside terms of (2b+4)(2b–3):

(4)(2b)=8b

Multiply the last terms of (2b+4)(2b–3):

(4)(–3)=–12

Finally, add these results and simplify.

4b2+–6b+8b+–12

4b2+2b–12

Simplify your answer.

(3u–3)(2u–2)

Use the distributive property to simplify (3u–3)(2u–2). You can use the FOIL method:

Multiply the first terms of (3u–3)(2u–2):

(3u)(2u)=6u2

Multiply the outside terms of (3u–3)(2u–2):

(3u)(–2)=–6u

Multiply the inside terms of (3u–3)(2u–2):

(–3)(2u)=–6u

Multiply the last terms of (3u–3)(2u–2):

(–3)(–2)=6

Finally, add these results and simplify.

6u2+–6u+–6u+6

6u2–12u+6

let’s practice!🖊️